

# **Current Transducer LA 50-S/SP1**

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

 $I_{PN} = 50 A$ 





#### **Electrical data**

| I <sub>PN</sub> I <sub>P</sub> R <sub>M</sub> | Primary nominal r.m.s. current Primary current, measuring range Measuring resistance |                                                  | $50$ $0 \pm 100$ $\mathbf{R}_{Mmin}  \mathbf{R}_{Mmax}$ |     | A<br>A |
|-----------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------|-----|--------|
|                                               | with ± 15 V                                                                          | @ ± 50 A <sub>max</sub>                          | 0                                                       | 330 | Ω      |
|                                               |                                                                                      | $\textcircled{a} \pm 100 \text{ A}_{\text{max}}$ | 0                                                       | 100 | Ω      |
| I <sub>SN</sub>                               | Secondary nominal r.m.s. current                                                     |                                                  | 25                                                      |     | mΑ     |
| K <sub>N</sub>                                | Conversion ratio                                                                     |                                                  | 1:200                                                   | 0   |        |
| <b>V</b> <sub>c</sub>                         | Supply voltage (± 5 %)                                                               |                                                  | ± 15                                                    |     | V      |
| I <sub>C</sub>                                | Current consumption                                                                  |                                                  | 10 + <b>I</b> <sub>s</sub>                              |     | mΑ     |
| $\mathbf{V}_{_{d}}$                           | R.m.s. voltage for AC isolation test, 50 Hz, 1 min                                   |                                                  | 3                                                       |     | kV     |

# **Accuracy - Dynamic performance data**

| $\mathbf{X}_{\scriptscriptstyle{G}}$ | Overall accuracy $\bigcirc$ $\mathbf{I}_{PN,}$ $\mathbf{T}_{A}$ = 25°C Linearity                             |               | ± 0.5<br>< 0.1      |                       | %<br>%            |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------|---------------------|-----------------------|-------------------|
| Ι <sub>ο</sub><br>Ι <sub>οτ</sub>    | Offset current @ $I_p = 0$ , $T_A = 25$ °C Thermal drift of $I_O$                                            | - 10°C + 70°C | Typ<br>± 0.2        | Max<br>± 0.1<br>± 0.4 | mA<br>mA          |
| t <sub>,</sub><br>di/dt<br>f         | Response time <sup>1)</sup> @ 90 % of I <sub>PN</sub> di/dt accurately followed Frequency bandwidth (- 1 dB) |               | < 1<br>> 50<br>DC 1 | 50                    | μs<br>A/μs<br>kHz |

#### General data

| $T_{\scriptscriptstyle \Delta}$        | Ambient operating temperature                     | - 10 + 70 | °C |
|----------------------------------------|---------------------------------------------------|-----------|----|
| $T_s$                                  | Ambient storage temperature                       | - 25 + 85 | °C |
| $\mathbf{R}_{\mathrm{s}}^{\mathrm{c}}$ | Secondary coil resistance @ T <sub>A</sub> = 70°C | 130       | Ω  |
| m                                      | Mass                                              | 45        | g  |
|                                        | Standards 2)                                      | EN 50178  |    |
|                                        |                                                   |           |    |

#### **Features**

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

## Special features

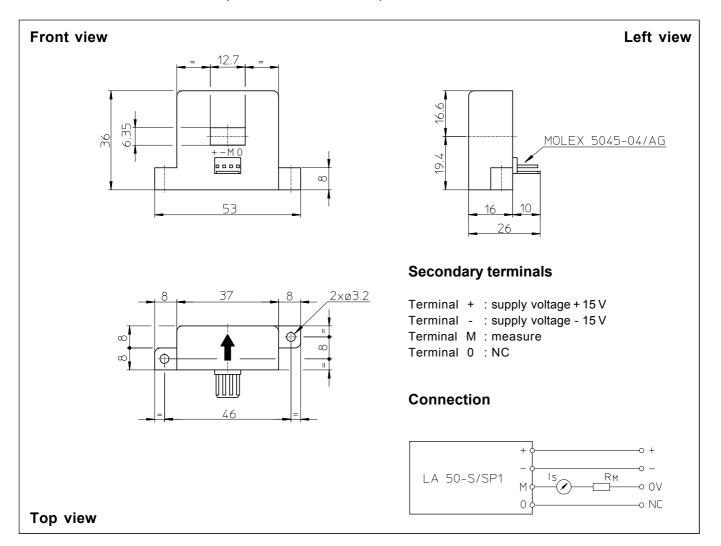
•  $I_p = 0.. \pm 100 A$ •  $K_N = 1:2000$ 

### **Advantages**

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

# **Applications**

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.


Notes : 1) With a di/dt of 50 A/µs

991014/5

<sup>&</sup>lt;sup>2)</sup> A list of corresponding tests is available.



# **Dimensions LA 50-S/SP1** (in mm. 1 mm = 0.0394 inch)



#### **Mechanical characteristics**

• General tolerance

Fastening

• Primary through-hole

Connection of secondary

± 0.2 mm 2 holes ∅ 3.2 mm 12.7 x 6.35 mm Molex 5045-04/AG

## Remarks

- I<sub>s</sub> is positive when I<sub>p</sub> flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.
- To measure nominal currents of less than 50 A, the optimum accuracy is obtained by having several primary turns (nominal current x number of turns < 50 At).</li>